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Introduction 

Cooling of electronic components has attracted many 
researchers in the heat transfer field. Natural-convection 
cooling by ambient air is quite popular because of its simplicity 
and reliability. Some published papers (Chu and Churchill 
1976; Turner and Flack 1980) consider natural convection in 
an enclosure heated by discrete heat sources. Using solid-liquid 
phase change materials (PCM) to cool electronic components 
is a promising alternative for periodically operating apparatus, 
because phase-change cooling can provide relatively larger 
cooling capability than air. In accordance with this possibility, 
experiments were conducted by the present authors for 
investigating the melting process in an enclosure with one of 
its side walls discretely heated (Zhang et al. 1993). 

Since the shape of the liquid phase is rather irregular during 
melting, and since the Rayleigh number may be very high 
(about 109), a large amount of computer time is required for 
the numerical solution of the melting process (Ho and Viskanta 
1984). Recently, boundary-layer theory has been adopted by 
some authors to solve the process of natural-convection- 
dominated melting. An analytical solution for the melting 
process in a rectangular enclosure isothermally heated from 
one of its vertical walls was obtained by Bejan (1989). A 
similar problem but with a boundary condition of uniform heat 
flux instead of uniform wall temperature was described by 
Zhang and Bejan (1989). But to the best of our knowledge, no 
analytical solution for the above-mentioned melting process 
with discrete heating has been published yet. 

Mathematical  model 

The experimental enclosure used by Zhang et al. (1993) is 
schematically shown in Figure 1. Three discrete heat sources 
made of copper are flush-mounted on the lateral wall, which 
is made of acrylic Plexiglas. Heat leakage through the back of 
the lateral wall to the surroundings was minimized by guard 
heaters, and the whole enclosure was well insulated. The 
enclosure was filled with n-octadecane. During the beginning 
stage of the experiment, the surface temperatures of the sources 
increased gradually, but after a certain time period, they all 
reached some steady values and remained unchanged. This type 
of melting process is said to be quasi-steady. Once this state is 
established, all the heat supplied by the discrete sources will be 
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used to melt the solid phase of PCM at the solid-liquid 
interface via the natural convection of the liquid phase. 

In order to facilitate the solution process, the quasi-steady 
state is assumed in addition to some classical assumptions, e.g., 
the initial solid-phase temperature is isothermal and at the 
melting point. The solution procedure is basically the same as 
that employed by Bejan (1989), but an important improvement 
has been made by taking into account the conduction in the 
discretely heated wall. Since the heat leakage through the back 
surface of the wall has been minimized, the conduction in the 
wall can be simplified as a one-dimensional (I-D) steady-state 
conduction, the dimensionless heat diffusion equation is 

- (  wd°q Q. d K~, + = 0 (1) 
dY dYJ 

where K" is the dimensionless thermal conductivity of the 
vertical wall, which equals K h in the heated section or Kw in 
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the unheated section. Q* is the difference between the amount 
of heat provided by the discrete sources and the amount 
transferred to the PCM. This can be expressed as 

( (  1 2(0w---0C)~Ral/5 for the heated section 
Q* = " ~ \3B A f (2) 

2(0w2 0c) Ra,/s for the unheated section 

The top and bottom of lateral wall are adiabatic. The 
boundary conditions, for Equation 1 are 

dOw 
- 0 ,  a t  Y = 0  and 1 (3) 

dY 

Mathematical formulations for the liquid region can be 
found in Zhang and Bejan's (1989) paper and are omitted here 
because of space limitations. A numerical method is used to 
solve these differential equations. The number of nodal points 
along the height is N = 900 in the calculation. The convergence 
criterion used for both 0c and 0,, is 10 -9. 

Results and discussions 

The comparison between the predicted and measured 
dimensionless temperatures of the heated wall when Ste = 2.36 
is given in Figure 2. It can be seen that their general tendencies 
are about the same. Quantitatively speaking, the coincidence 
of the predicted and measured temperatures on the heat source 
surface is better than that on the unheated sections (i.e., the 
surface between the sources). This finding may be attributed to 
the 1-D simplification of the wall conduction. Compared to the 
results reported by Zhang and Bejan (1989), temperatures on 
the heat source surfaces are higher than those for uniform 
heating, and the reverse is true on the unheated sections. The 
average temperatures of the heated wall are about the same. 

The Stefan number varied from 1.96 to 3.90 during the 
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experiment conducted by Zhang et al. (1993). The computa- 
tional results show that the dimensionless temperatures of the 
sources are virtually independent of Ste. So for Ste = 1.96-3.90, 
the surface temperatures of heat sources T h can be calculated as 

(Th), -- Tm= A, 3qb Ra- 1/5 (4) 
k 

where n = 1, 2, 3 represents the lower, middle, and upper 
heat sources respectively, and A,'s denote corresponding 
constants, which in that experiment are 

A 1 = 1.67 A 2 = 2.41 A 3 = 3.32 

Notat ion 

b Height of the heat source 
B Dimensionless height of the heat source, b/H 
Cp Specific heat of liquid 
0 Gravitational acceleration 
H, L Height and width of enclosure 
h m Latent heat 
k~ Thermal conductivity of heated part of the wall 
k I Thermal conductivity of liquid 
k,  Thermal conductivity of unheated part of the wall 
Kh Dimensionless thermal conductivity of heated 

part of the wall, kh/kl 
K w Dimensionless thermal conductivity of unheated 

part of the wall, k,/kl 
q Heat flux 

gfl(3qb/kl)n 3 
Ra Rayleigh number, 

v~ 

Ste Stefan number, Cp(3qb/k=) 
hm 

T c Core temperature 
T m Melting point 
Tw Wall temperature 
U o Dimensionless local interface velocity 

W 
W 
Y 
Y 

Thickness of discrete sources 
Dimensionless thickness of discrete sources, w/H 
Vertical coordinate 
Dimensionless vertical coordinate, y/H 

Greek symbols 
Thermal diffusivity of liquid 

fl Volumetric thermal expansion coefficient of liquid 
6 Thickness of cold boundary layer 
A Dimensionless cold boundary-layer thickness, 

6 
_ Ral/5 
H 

Oc Dimensionless core temperature, 

(T~ -- Tin) RaX/5 
3qb/kl 

0, Dimensionless wall temperature, 
(Tw - Tin) Ral/5 

3qb/k~ 
2 Thickness of warm boundary layer 
A Dimensionless warm boundary-layer thickness, 

2 
_ Rat/5 
H 

v Kinematic viscosity of liquid 
p Density of liquid 

80 Int. J. Heat and Fluid Flow, Vol. 15, No. 1, February 1994 



Y k 
Kw = 1.12 , ~  

I l l  

0.8 k. I 

0.6 --~ 

0.4 

0.2 
I [ ]  .- B = l / 9  

~" =~-~  B = I / 6  
~ L . . ~  ~ B = 2 / 9  

0.0 / i , , , 
0 1 2 3 4 0,,, 

Figure 3 Effect of dimensions of heat sources on the temperature 
profile 

The effect of dimensions of the heat source on the 
temperature profile in the enclosure is illustrated in Figure 3. 
As to the effect of the source dimensions, under the same Stefan 
number (i.e., the power supplied to the discrete source remains 
unchanged), the larger the height b, the lower the source surface 
temperature will be. However, the temperature of the unheated 
section increases. In other words, the temperature difference 
between the heated and unheated sections will decrease, and 
then the longitudinal conduction of the wall will decrease as 
the height of the source increases. The variation of the 
dimensionless solid-liquid interface velocity along the height 
of the enclosure with different source heights is shown in Figure 
4. This dimensionless velocity can be calculated from the energy 
conservation at the solid-liquid interface (Bejan 1989), and the 
result is Uo(Y) = 20e(Y)/A(Y). From Figure 4, the source height 
has only a little effect on the interface velocity. The shape of 
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Figure 4 Effect of dimensions of heat sources on the solid-l iquid 
interface velocity 
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profile 

solid-liquid interface becomes more smooth with increasing 
source height because the temperature difference between the 
heated section and unheated section becomes smaller. 

The variations of wall temperature for different unheated 
wall conductivities are shown in Figure 5. The surface 
temperature of the upper source decreases and that of the lower 
one increases with increasing unheated wall conductivity. The 
temperatures of the unheated sections are increased as well. The 
surface temperature distribution of the whole wall tends to be 
uniform, because the amount of heat flowing downwards 
through the wall increases with the increasing unheated wall 
thermal conductivity. Figure 6 shows the variations of the 
interface moving velocity when the unheated wall conductivity 
varies. The velocity of the lower interface increases and that of 
the upper interface decreases as the unheated wall conductivity 
increases. The reason for this variation is that when unheated 
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wall conduct ivi ty  increases, the tempera ture  of the upper  par t  
of the wall decreases, but  the tempera ture  of the lower par t  
increases. 
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